かんたん光顕-走査電顕相関観察

Correlative Light Electron Microscopy

-コアファシリティーにおける生産性向上 -

久留米大学医学部先端イメージンク研究センター 太田 啓介

組織細胞の空間解剖

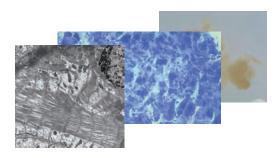
先端バイオイメージング支援

連続断面から3Dを再構築

先端バイオイメージング支援

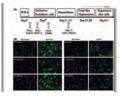
コア・ファシリティーとしての研究サポート

電顕:


TEM2台, FE-SEM, LV-SEM, FIB-SEM

光顕:

CLSM, MP etc



腎・心筋生検の検索

Haemophilia Willey Successful correction of factor V deficiency of patient-derived iPSCs by CRISPR/Cas9-mediated gene editing

66th Advanced Imaging Research Center

先端イメージング研究センター

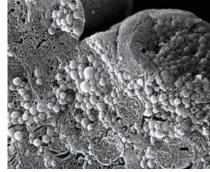
前身: 久留米大学医学部内

電子顕微鏡室

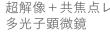
1955年 (S30) 設立 竹重順夫先生 山田英智先生 徳安清輝先生

村上正浩先生 谷川久一先生


共焦点レーザー顕微鏡室


1994年 (H5) 設立 猪口哲夫先生

本館創立当時



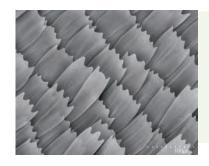
2017年 先端イメージング研究センター 設置

中村桂一郎 センター長 高度なイメージング技術の確立と共同研究体制

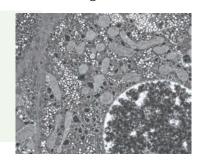
透過型電子顕微鏡 X2 走查型電子顕微鏡 X2 FIB-SEM

超解像+共焦点レーザー顕微鏡

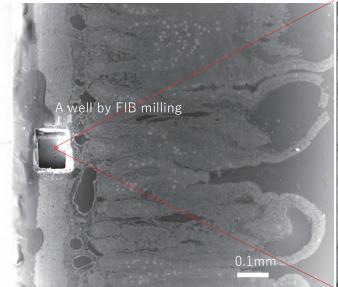
大学のコアファシリティの利用実績

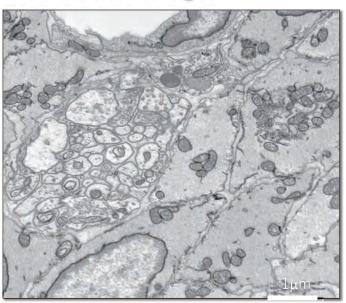

2017年度 センター設立時の状況

• TEM 年間約5200枚


• FIB/SEM 約4000時間 反射電子によるBFI画像 OK

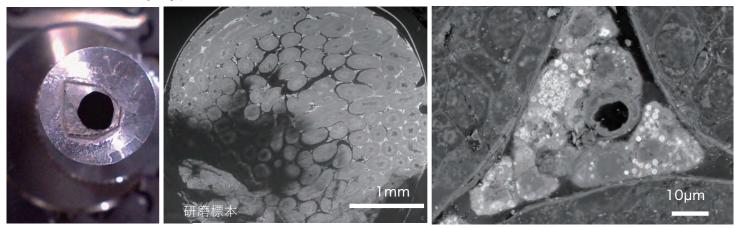
● FE-SEM 16時間 反射電子によるBFI画像 🔀


BFI: Block face Image



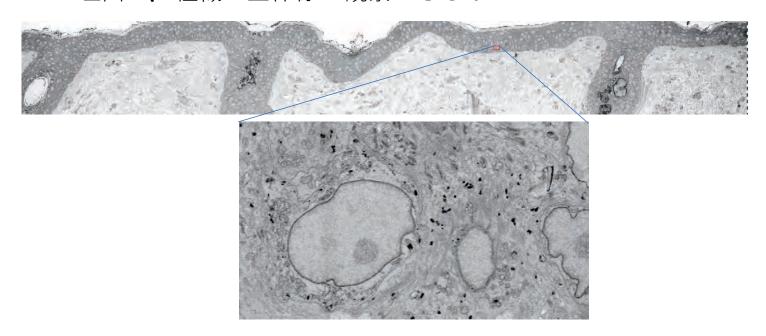
久留米大学において従来のSEM観察需要 ↓SEMによる組織観察 ↑ ↑

SEM ブロック表面観察法 Block Face Image

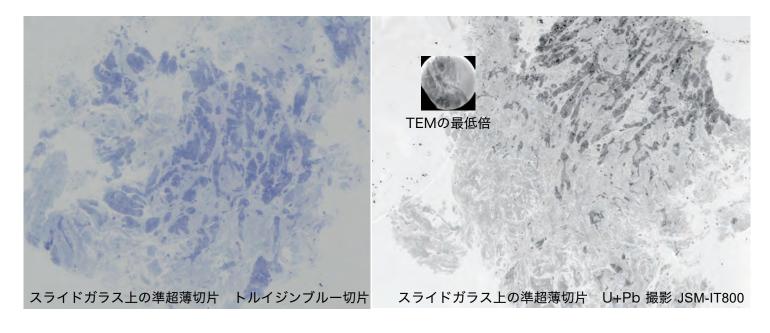


反射電子検出器の向上により TEM用の切片、ブロック表面から直接組織像が得られる

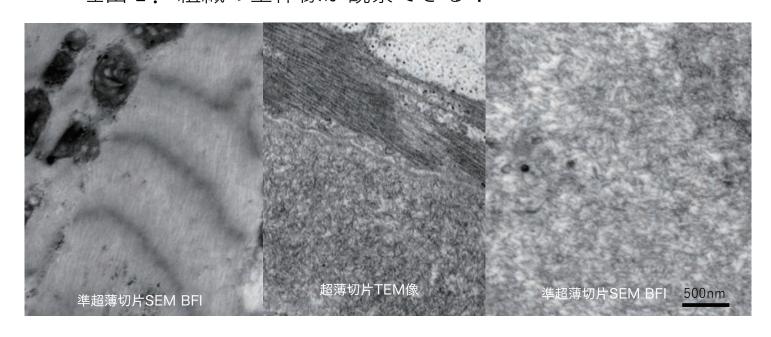
SEM ブロック表面観察法 Block Face Image


大型組織のスクリーニング

反射電子検出器の向上により TEM用の切片、ブロック表面から直接組織像が得られる


SEMのBFIが生産性向上に寄与

理由1. 組織の全体像が観察できる!


SEMのBFIが生産性向上に寄与

理由1. 組織の全体像が観察できる!

SEMのBFIが生産性向上に寄与

理由1. 組織の全体像が観察できる!

SEMのBFIが生産性向上に寄与

理由1. 組織の全体像が観察できる!

理由 2. もし準超薄切片でいろんな染色ができたらHappy?

申し訳ありません。

未発表データですので詳細は省きます。

ところでCLEMって?

光学顕微鏡で観察したその場を 電子顕微鏡で見る技術

Correlative Light and Electron Microscopy

光電子相関顕微鏡法

Correlate

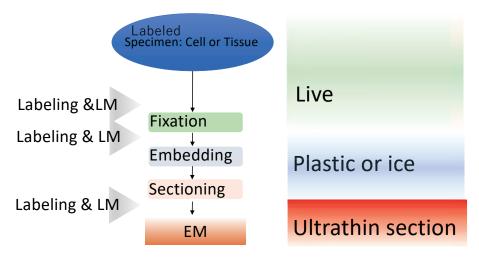
Light Microscopy function

Electron Microscopy ultrastructure

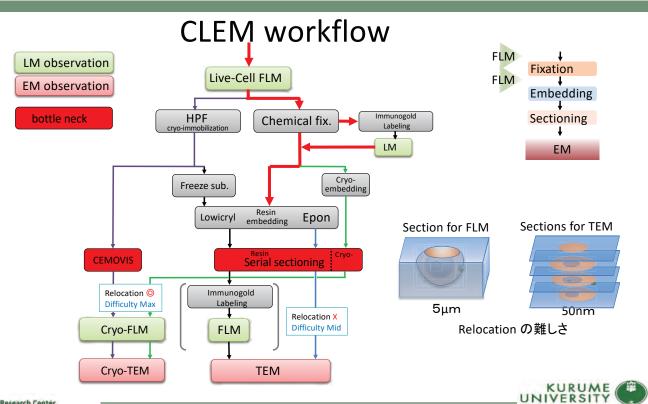
光学顕微鏡観察と電子顕微鏡観察とにおける試料作製の違い

電顕と光顕の違い

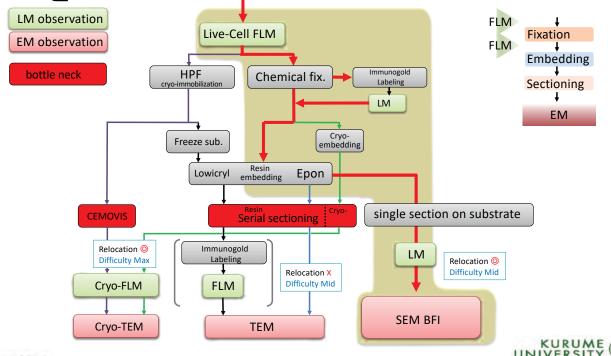
		光顕	電顕
観察範囲(FOV)		mm-10µm	100μm-0.1μm
試料作成	試料・観察環境	含水・液中	完全脱水・真空中
	観察	Live	Snapshot
	観察対象	タンパクの分布	形
	試料固定	弱	強 (グルタルアルデヒド+0s04)


光学顕微鏡観察と電子顕微鏡観察とにおける試料作製の違い

電顕と光顕 そもそも観ている物が違う

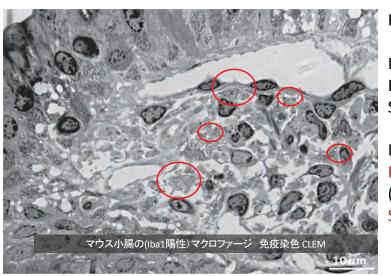

光学顕微鏡観察と電子顕微鏡観察のギャップ			
	光学顕微鏡	電子顕微鏡	
現象 結像原理 相互作用の強さ	光子と原子の相互作用 光の屈折(光学レンズ) 低	電子と原子の相互作用 ローレンツ力(電子レンズ) 強	
一般的分解能	1 μm	数nm	
情報	光子の位相・散乱・吸収 蛍光・発光	電子散乱(反射電子)・二次電子 特性X線・CL	
情報源	色素・蛍光色素など	元素分布(重元素)	
透過試料の厚さ 固定 免疫染色のプローブ	数μm 弱(ホルムアルデヒドなど) 色素・蛍光色素	数十nm 強(グルタールアルデヒドなど) DAB-OsBlack, コロイド金など	

透過型電子顕微鏡を用いたCLEMの基本的ワークフロー


基本的 workflow

何を重視するのか?形態?局在? どんな<mark>試料作成</mark>を行うのか、どんなプローブ/ **染色**を使うのか?

SEMをつかったかんたんCLEM workflow



Advanced imaging Research Center

Array Tomography Micheva D. Array Tomography Neuron, 55(1): 25-36, 2007

Neuron, 55(1): 25-36, 2007

CLEM on section with SEM

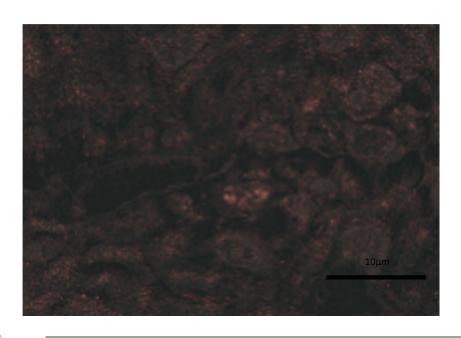
Fixation 4% Formaldehyde (+0.1% glutaraldehyde)

Dehydration: ethanol series Embedding: LR White resin Semithin sectioning (0.5µm)

take on a slide glass

Immunohistochemistry:

Fluorescence LM

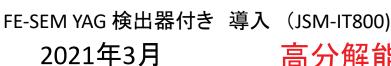

(OsO₄ coating)

SEM (Back scatter electron)

Acc. 3kV~7kV

CLEM on section with SEM

UNIVERSITY


Advanced Imaging Research Center

コアファシリティーとしてSEMはどっち? ⇒コアとしては両方欲しいです。

低真空簡易SEM 導入 2019年3月

目的

迅速観察

高分解能 連続切片観察

Advanced Imaging Research Center

久留米での低真空簡易SEM迅速観察を交えた 第一弾研究ワークフロー コンサルティング

どんなサンプル? 何が観たい? いつまでに?

LM観察

パラフィン切片 Cryostat切片

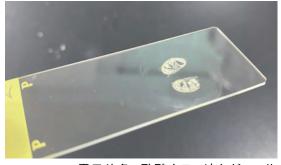
できるだけ短期間

30分でとりあえず 結果を返す!

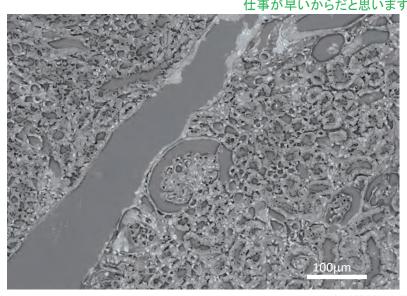
薄切(準超薄切片)⇒染色⇒低真空SEM BFI観察開始 上司に相談

> Option ⇒ 導電処理 ⇒ 高分解能観察 40分

> > UNIVERSITY (

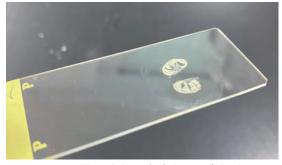

Advanced imaging Research Center

パラフィン・凍結切片のSEM観察もかなり人気



切って 洗って 染めて 乾燥 10分

電子染色 酢酸ウラン液などで3分

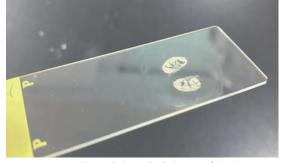


パラフィン・凍結切片のSEM観察もかなり人気

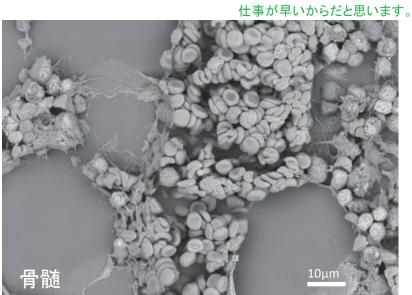
仕事が早いからだと思います。

切って 洗って 染めて 乾燥 10分

電子染色 酢酸ウラン液などで3分

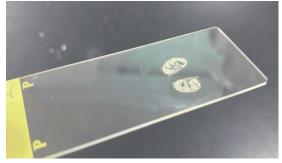


Advanced Imaging Research Center

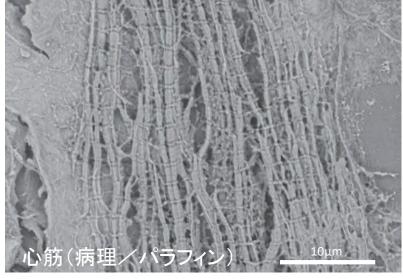

パラフィン・凍結切片のSEM観察もかなり人気

切って 洗って 染めて 乾燥 10分

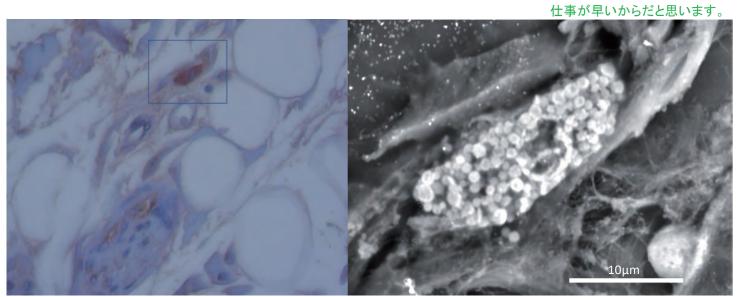
電子染色 酢酸ウラン液などで3分



パラフィン・凍結切片のSEM観察もかなり人気


仕事が早いからだと思います。

切って 洗って 乾燥 10分


電子染色 酢酸ウラン液などで3分

- Advanced Imaging Research Center

パラフィン・凍結切片のSEM観察もかなり人気

DABもよく見えます。

かんたんCLEMは電顕観察のパラダイムシフト

利用実績 SEMの方は比較できるデータがありませんが、、 TEMの利用数・利用者数が増えています。

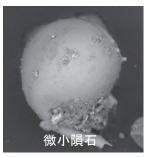
TEM 2017 5200枚/年 ⇒ 2020 6800枚/年

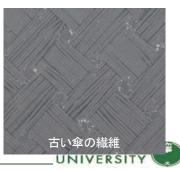
固定概念

電顕は時間がかかる 形しか見えない

SEMの簡単CLEM パラダイムシフト すぐデータになる。 機能分子との相関もまぁできる

Advanced Imaging Research Center


SEMはアウトリーチ・科学教育にも



Advanced Imaging Research Center

Correlative Light Electron Microscopy

かんたん光顕-走査電顕相関観察 -コアファシリティーにおける生産性向上 -

- 一時期医学生物では少し下火になりましたが 最近は、古典的なSEMに回帰される研究者も 増えてきました。
- もちろんTEMもその他の高度なImagingも大切ですが 電子顕微鏡の画像が読める方が減った今だからこそ SEMは早く、しかも説得力の高いデータを提供できます。

- Advanced Imaging Research Center

ありがとうございました。

kohta@kurume-u.ac.jp

謝辞

先端イメージングセンタースタッフ 都合亜記暢・船津貴志・築島沙季

久留米大学 解剖学講座

中村桂一郎・平嶋慎吾・力丸由紀子・常吉理紗・岩佐尚美

久留米市

末次智

日本雷子株式会社の皆様

